Основанием пирамиды MABCD является квадрат ABCD, ребро MD перпендикулярно к плоскости основания, AD = DM = 2. Найдите площадь поверхности пирамиды и ее объем
Ответы
Дано: AD=DM=2, MABCD-пирамида, ABCD - квадрат
Найти: S(поверхности)-?, V-?
Решение:
Для начала найдем объем. Общая формула V=1/3*S*h
h - высота, и это у нас DM, как видно на рисунке
S - площадь основания. площадь квадрата a^2, т.е. в нашем случае AD^2
С площадью поверхности все сложнее
Она складывается из площади основания, площади треуг. MAB, площади треуг. MBC, площади треуг. MCD и площади треуг. MDA.
при этом заметим, что треугольники MDA и MCD равны, а также треугольнки MAB и MBC тоже равны, поэтому:
площадь основания, как и говорилось раньше, находится легко:
площадь треугольника MAB тоже довольно легко находится.
т.к. DM перпендикулярен DC, то и MA перпендикулярен AB
Это прямоугольный треугольник
Найдем AM, а затем сможем найти и площадь MBA
Площадь треугольника MBA
Площадь треугольника MDA находится ещё легче, прямоугольный теругольник, два катета известно:
Ответ: 6+4√2