В двоичной системе счисления при записи числа используют всего две цифры: 0 и 1. Число «один» записывается, как обычно, 1, но число «два» составляет уже единицу второго разряда и поэтому записывается так: 10-2 «одна двойка и нуль единиц» (цифра 2, находящаяся внизу в конце записи числа, означает, что число записано в двоичной системе). Число «три» изображается: 11-2 «одна двойка и одна единица». Число «четыре» представляет собой единицу следующего, третьего разряда и поэтому записывается так: 100-2 «одна четверка, нуль двоек и нуль единиц». Таким образом, если в записи числа цифру 1 передвинуть влево на один разряд, то ее значение увеличивается вдвое (а не в десять раз, как в нашей десятичной системе). Сравните представление числа, запись которого состоит из четырех цифр 1, в виде суммы разрядных единиц в десятичной и двоичной системах: (тут все цифры, который через тире, вверху) 1111 = 1 • 1000 + 1 • 100 + 1 • 10 + 1 = 1 • 10-3 + 1 • 10-2 + 1 • 10 + 1; (а тут "1111-2" написано в двоичной системе исчисления) 1111-2 = 1 • 8 + 1• 4 + 1• 2 + 1 = 1• 2-3+1• 2-2 + 1• 2 + 1 = 15. Попробуйте записать в десятичной системе счисления числа, которые в двоичной системе пишутся так: 10-2; 100-2; 101-2; 110-2; 1110-2. Запишите в двоичной системе все натуральные числа от 1 до 15 включительно. Подумайте, почему двоичная система широко используется в вычислительной технике, но она неудобна в повседневной практике.
Ответы
Сравниваем запись в десятичной и двоичной системе.
1111₁₀ = 1*10³ + 1*10² + 1*10¹ + 1*10⁰ = 10000 + 1000 + 100 + 10 + 1
1111₂ = 1*2³ + 1*2² + 1*2¹ + 1*2⁰ = 8 + 4 + 2 + 1 = 15₁₀.
Видим, что для записи двузначного десятичного числа 15 понадобилось четыре разряда в двоичной системе.
Примеры записи чисел: 10₂ = 1*2¹+ 0*2⁰ = 2₁₀ и 100₂ = 1*2² + 0*2¹ + 0*2⁰ = 4₁₀ и
101₂ = 1*2² + 1*2⁰ = 4 + 1 = 5₁₀ и 110₂ = 2² + 2¹ = 4 + 2 = 6₁₀ и 1110₂ = 2³+2²+2¹ = 8 + 4 + 2 = 14₁₀
На рисунке в приложении показана запись натуральных чисел от 0 до 31 в двоичной системе исчисления.
В чём же преимущество двоичной системы - в её простоте. В каждом разряде всего два значения - 0 и 1. Недостаток - большое число разрядов для записи числа. Но эту проблему легко решают современные процессоры. Каждый разряд в двоичной системе называется - бит. Число в 32 бит (это 32 единицы в записи) соответствует десятичному числу = 4 294 967 296 , а процессоры в 64 бит могут работать с числами до 1,8*10¹⁹ (19 нулей после запятой). Всего две цифры открывают безграничные возможности.