Предмет: Математика,
автор: mkremfojwmqier
Доказать, что √5+3√2 ирациональное
Ответы
Автор ответа:
0
Докажем методом от противного:
Пусть sqrt(5) + 3 * sqrt(2) = m / n, где m — целое число, n — натуральное число;
Возведем в квадрат: (sqrt(5) + 3 * sqrt(2))^2 = m^2 / n^2;
5 + 18 + 6 * sqrt(10) = m^2 / n^2;
sqrt(10) = m^2 / (6 * n^2) - 23 / 6;
Получается, что sqrt(10) тоже рациональное число. Пусть sqrt(10) = k / t; k / t — несократимая дробь.
Возведем в квадрат: 10 = k^2 / t^2; 10 * t^2 = k^2;
Получается, что k^2 делится на 10, значит и k делится на 10. Заменим k на 10 * r;
10 * t^2 = 100 * r^2;
t^2 = 10 * r^2; Аналогично отсюда следует, что t на цело делится на 10. Следовательно, у k и t есть общий множитель, что противоречит несократимости дроби. Значит, наше предположение неверно, и sqrt(5) + 3 * sqrt(2) — иррациональное число.
Пусть sqrt(5) + 3 * sqrt(2) = m / n, где m — целое число, n — натуральное число;
Возведем в квадрат: (sqrt(5) + 3 * sqrt(2))^2 = m^2 / n^2;
5 + 18 + 6 * sqrt(10) = m^2 / n^2;
sqrt(10) = m^2 / (6 * n^2) - 23 / 6;
Получается, что sqrt(10) тоже рациональное число. Пусть sqrt(10) = k / t; k / t — несократимая дробь.
Возведем в квадрат: 10 = k^2 / t^2; 10 * t^2 = k^2;
Получается, что k^2 делится на 10, значит и k делится на 10. Заменим k на 10 * r;
10 * t^2 = 100 * r^2;
t^2 = 10 * r^2; Аналогично отсюда следует, что t на цело делится на 10. Следовательно, у k и t есть общий множитель, что противоречит несократимости дроби. Значит, наше предположение неверно, и sqrt(5) + 3 * sqrt(2) — иррациональное число.
Автор ответа:
0
Спасибо огромное
Автор ответа:
0
Только там тройка не перед корнем идет, а корень кубический
Автор ответа:
0
Хах, а как это можно было понять?
Автор ответа:
0
Простите ради бога ((и что я теперь делать буду
Похожие вопросы
Предмет: Русский язык,
автор: iosifidivana01
Предмет: Алгебра,
автор: anna556640
Предмет: Алгебра,
автор: callrip07
Предмет: Геометрия,
автор: nigora1234533
Предмет: Математика,
автор: KsyushaAngelina