в треугольнике ABC медины BB1 и CC1 пересекаются в точке O и равны 15 см и 18 см соответственно. Найдите периметр треугольника ABC,если угол BOC равен 90 градусов
Ответы
Задача решается проще, если вспомнить, что медианы в точке пересечения (т. е. все три медианы в любом треугольнике пересекаются внутри него строго в одной точке - это центр тяжести треугольника). Так вот эти медианы делятся в точке пересечения в соотношении 2 к 1, считая от вершины. Значит ВО=15*2/3=30/3=10 см, СО=18*2/3=6*2=12 см.
ОВ1=15/3=5 см, ОС1=18/3=6 см. Теперь нужно вспомнить теорему Пифагора. Треугольник ВОС - прямоугольный, значит ВС - гипотенуза.
Треугольник ВОС1 - тоже прямоугольный, так как угол С1OB - прямой. Доказывается так.
- как развернутый угол.
По теореме Пифагора из треугольника находим гипотенузу ВС1.
Заметим, что BC1 - половина АВ по определению медианы СС1.
Треугольник B1OC - прямоугольный, так как угол B1OC - прямой, как вертикальный к углу С1OB. Та же теорема Пифагора, чтобы вычислить гипотенузу В1С.
B1C=13 см.
Заметим также, что В1С - половина АС. Значит АС=26 см.
Вычислим периметр АВ.