Предмет: Алгебра, автор: Kracavchick

Задачка: Найдите четыре последовательных натуральных числа если известно что произведение второго и четвертого чисел больше чем произведение первого и третьего на тридцать один
Прошууу

Ответы

Автор ответа: 21fizika
0
Пусть числа n, (n+1), (n+2), (n+3).
(n+1)(n+3)-(n+2)*n=31,
n^2+n+3n+3-n^2-2n=31,
2n=31-3,
2n=28,
  n=14, 
ответ: 14; 15; 16; 17.
15*17-14*16=255-224=31.
Похожие вопросы