Предмет: Алгебра,
автор: sawinychewa
2sin (7π/2+x)* sin x =√3 cos x, [-7π;-6π]
Ответы
Автор ответа:
0
2sin(7π/2 + x)*sinx = √3*cosx
2sin(π/2 + x)sinx = √3cosx
2cosxsinx - √3cosx = 0
cosx(2sinx - √3) = 0
1) cosx = 0
x₁ = π/2 + πk, k∈Z
2) 2sinx - √3 = 0
sinx = √3/2
x = (-1)^(n)*arcsin(√3/2) + 2πn, n∈Z
x₂ = (-1)^(n)*(π/3) + 2πn, n∈Z
2sin(π/2 + x)sinx = √3cosx
2cosxsinx - √3cosx = 0
cosx(2sinx - √3) = 0
1) cosx = 0
x₁ = π/2 + πk, k∈Z
2) 2sinx - √3 = 0
sinx = √3/2
x = (-1)^(n)*arcsin(√3/2) + 2πn, n∈Z
x₂ = (-1)^(n)*(π/3) + 2πn, n∈Z
Похожие вопросы
Предмет: История,
автор: mmzmzk
Предмет: Математика,
автор: SerikNuraiym
Предмет: Математика,
автор: windi19
Предмет: Химия,
автор: vvictoria312
Предмет: Математика,
автор: lenachka79570