Предмет: Математика, автор: Nastia012

Помогите пожалуйста решить!!!

Приложения:

Ответы

Автор ответа: Alexandr130398
0
1-я задача.
∠АВД - вписанный в окружность и опирается на дугу АД
∠АСД - вписанный в окружность и опирается на дугу АД

вписанные углы, опирающиеся на одну и ту же дугу равны.

Следовательно, ∠АВД=∠АСД=30°

в ΔСЕД:
∠СЕД=180-(∠АСД+∠ЕДС)=180-(30+40)=180-70=110°

углы ВЕС и СЕД - смежные (их сумма равна 180°),
значит ∠ВЕС=180-∠СЕД=180-110=70°

2-я задача

По рисунку видно, что центр окружности О лежит на стороне треугольника, значит ΔАВС - прямоугольный, АВ-гипотенуза
АО=ОВ=R,  R-радиус

∠АСВ=90°
∠А=180-(90+30)=60°

cosB=CB/AВ
cos30°=6/AВ
AВ=6/cos30°=6:(√3/2)=6*2/√3=12/√3=12√3/3=4√3

tgB=AC/BC
tg30°=AC/6
AC=6*tg30°=6*√3/3=2√3

Если АВ=4√3, то АО=ОВ=АВ/2=4√3/2=2√3

Площадь треугольника можно вычислить по формуле:
S=a*b*sinα/2

SΔ(АСО)=АС*АО*sinA/2=2√3*2√3*sin60°/2=(4*3*√3/2)/2=3√3
SΔ(BCO)=CB*OB*sinB/2=6*2√3*sin30°/2=(12√3/2)/2=3√3

Автор ответа: Nastia012
0
Спасибо ОГРОМНОЕ!!!
Похожие вопросы
Предмет: Математика, автор: оалвев