Предмет: Геометрия,
автор: АндрійКисєченко
В параллелограмме ABCD угол A = 45 градусов, AD =4. На продолжении стороны AB отложен отрезок BP так, что угол PDA равен 90.Отрезки BC и PD пересекаются в точке T. PT : TD = 3:1. Докажите, что треугольники BPT и TCD подобны и найдите отнашения их площадей.
Ответы
Автор ответа:
0
РD и BC пересекаются, значит, ∠РТВ=∠СТD(вертикальные углы). AB║CD(параллелограмм), РD пересекает DC в точке C, PD пересекает AB в точке P. Значит, ∠APD=∠CDT( внутренние накрест-лежащие). Следовательно, ΔВРТ подобен ΔCTD( по двум углам). ЧТД
Отношение соответствующих сторон подобных треугольников есть коэффициент подобия. В данном случае k=PT/TD=3. А отношение площадей подобных треугольников есть коэффициент подобия в квадрате, т.е. SΔBPT/SΔTCD=k²=9
Ответ: SΔBPT/SΔTCD=9
Отношение соответствующих сторон подобных треугольников есть коэффициент подобия. В данном случае k=PT/TD=3. А отношение площадей подобных треугольников есть коэффициент подобия в квадрате, т.е. SΔBPT/SΔTCD=k²=9
Ответ: SΔBPT/SΔTCD=9
Похожие вопросы
Предмет: Математика,
автор: natashadakaa
Предмет: Геометрия,
автор: sofaagafonova4734
Предмет: Қазақ тiлi,
автор: sauleshoibekova7502
Предмет: История,
автор: клепвино