Предмет: Геометрия,
автор: AzioAuditore
Высота прямоугольного треугольника, проведённая к гипотенузе, делит прямой угол на два угла, один из которых на 40 градусов больше другого. Найдите острые углы данного треугольника.
Ответы
Автор ответа:
0
Пусть один будет х, второй - х+40
х+х+40=90
2х=50
х=25
х+40=65
Из маленьких прямоугольных треугольников, образованных высотой, найдем оставшиеся углы:
90-25=65
90-65=25
Ответ: 25; 65.
х+х+40=90
2х=50
х=25
х+40=65
Из маленьких прямоугольных треугольников, образованных высотой, найдем оставшиеся углы:
90-25=65
90-65=25
Ответ: 25; 65.
Автор ответа:
0
Спасибо за ответ
Автор ответа:
0
По условию получаем уравнение:
Теперь, зная что высота является перпендикуляром. То получаем 2 прямоугольных треугольника, со следующими углами:
1.
2.
Отсюда следует, что острые углы изначального прямоугольного треугольника соответственно равны:
Теперь, зная что высота является перпендикуляром. То получаем 2 прямоугольных треугольника, со следующими углами:
1.
2.
Отсюда следует, что острые углы изначального прямоугольного треугольника соответственно равны:
Похожие вопросы
Предмет: Другие предметы,
автор: 2Tyttyry1
Предмет: История,
автор: fasshoin
Предмет: Математика,
автор: polinka08glinova
Предмет: Математика,
автор: нина33333