Предмет: Геометрия, автор: tantan29

Медианы АМ и СК треугольнике АВС перпендек. Найти стороны треугольника, если АМ= 9, СК= 12
Заранее спасибо

Ответы

Автор ответа: Andr1806
0
Медианы АМ и СК треугольнике АВС перпендикулярны.  
Найти стороны треугольника, если АМ= 9, СК= 12.
Решение:
Медианы треугольника точкой пересечения О делятся в отношении 2:1, считая от вершины.
Дано: АМ=9, СК=12. Значит АО=9*(2/3)=6, ОМ=3, СО=12*(2/3)=8, ОК=4.
В прямоугольном треугольнике АОС (угол АОС=90° - дано) гипотенуза АС по Пифагору равна АС=√(АО²+ОС²) или АС=√(6²+8²)=10.
В прямоугольном треугольнике АОК (угол АОК=90° - дано) гипотенуза АК по Пифагору равна АК=√(АО²+ОК²) или АК=√(6²+4²)=2√13. АВ=2*АК, так как СК - медиана. АВ=4√13.
В прямоугольном треугольнике СОМ (угол СОМ=90° - дано) гипотенуза СМ по Пифагору равна СМ=√(ОМ²+ОС²) или СМ=√(3²+8²)=√73. ВС=2*СМ, так как АМ - медиана. ВС=2√73.
Ответ: стороны треугольника равны АС=10; АВ=4√13≈14,4; ВС=2√73≈17.

Проверка:
Три медианы делят треугольник на 6 равновеликих треугольника.
Площадь одного из них равна Saok=(1/2)*6*4=12. значит Sabc=6*12=72.
В то же время по Герону Sabc=√[p(p-a)(p-b)(p-c)], где р - полупериметр треугольника, а,b,c - его стороны. Полупериметр равен:
р=(2√73+4√13+10)/2=(√73+2√13+5).
Подставим найденные значения в формулу:
Sabc=√[(√73+(2√13+5))*(2√13+5-√73)*(√73+(5-2√13))*(√73-(5-2√13))]=
√[((2√13+5)²-73)*(73-(5-2√13)²)]=√[(52+25+20√13-73)*(73-25+20√13-52)]=
√[(20√13+4)*(20√13-4)]=√(5200-16)=72.
Итак, стороны треугольника найдены правильно.
Приложения:
Похожие вопросы
Предмет: Алгебра, автор: alinarudenkooo942
Предмет: География, автор: pomilojanastasia
Предмет: Алгебра, автор: nastakocar
Предмет: Обществознание, автор: Аноним