Предмет: Алгебра, автор: happiness98

1) Найдите производную функции y=5x^4-2x^3+3x-7
2) Вычислите площадь фигуры, ограниченной линиями y=2x-x^2 сверху и прямой y= - x снизу

Ответы

Автор ответа: Utem
0
y'=(5x⁴-2x³+3x-7)'=20x³-6x²+3

2) Чертим чертёж. Определяем пределы интегрирования, в наше случае это [0;3] (можно найти аналитически, решив уравнение:
2x-x²=-x
-x²+2x+x=0
3x-x²=0
x(3-x)=0
x=0    3-x=0
          x=3
Далее по формуле площади, ограниченной линиями, вычисляем определённый интеграл
S= intlimits^3_0 {(2x-x^2-(-x))} , dx= intlimits^3_0 {(3x-[tex]=( frac{3x^2}{2}- frac{x^3}{3})|_0^3= frac{3*3^2}{2}- frac{3^3}{3}-0= frac{3*3^3-2*3^3}{2*3}= frac{3^3(3-2)}{2*3}= frac{3^2}{2}=4,5        x^2)} , dx= [/tex] ед².

Приложения:
Похожие вопросы
Предмет: Математика, автор: pidarezkiy
Предмет: Математика, автор: alein66666777
Предмет: Математика, автор: Generalovavika