Предмет: Геометрия,
автор: 1234569822177
определите полную поверхность
правильной четырехугольной
призмы , если ее диагональ равна
5 см, а диагональ боковой грани
равна 4 см.
Ответы
Автор ответа:
0
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:
a2 + a2 = 52
2a2 = 25
a = √12,5
Высота боковой грани (обозначим как h) тогда будет равна:
h2 + 12,5 = 42
h2 + 12,5 = 16
h2 = 3,5
h = √3,5
Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания
S = 2a2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см2 .
Ответ: 25 + 10√7 ≈ 51,46 см2 .
Похожие вопросы
Предмет: Информатика,
автор: ekaterinal250382
Предмет: Биология,
автор: Аноним
Предмет: Математика,
автор: laurabelgibaeva68
Предмет: Математика,
автор: Аноним