Предмет: Геометрия,
автор: Аноним
Диагональ правильной четырёхугольной призмы наклонена к плоскости основания под углом в 30 градусов. Найдите площадь полной поверхности призмы, если высота этой призмы 12√2см.
Ответы
Автор ответа:
0
Для вычисления поверхности, необходимо знать размер квадрата-основания призмы.
Диагональ призмы, ее вертикальное ребро и диагональ основания составляют прямоугольный треугольник с известными углом и длиной противолежащего катета (высота призмы).
Вторым катетом является диагональ основания, длиной (12·√2)·ctg30°=12·√2·√3=12·√6см.
Длина стороны квадрата-основания равна 12·√6·cos45°=12·√6·√2/2=6·√12см.
Площадь основания: (6·√12)²=36·12=432 см²
Площадь боковой грани: (12·√2)· (6·√12)=72√24 см²
Полная площадь поверхности: S=2·432+4·72√24=864+288√24≈864+1411=2275 см²
Похожие вопросы
Предмет: Физика,
автор: gtagta314
Предмет: Математика,
автор: sandra7100
Предмет: Алгебра,
автор: sakuratyr55
Предмет: География,
автор: artyr8