Предмет: Геометрия, автор: Аноним

определите периметр прямоугольника если его диагональ равна 2корня из10 м, а площадь 12 м2

Ответы

Автор ответа: natali15medved
0
Обозначим стороны прямоугольника как х и у, тогда составим систему уравнений. Первое уравнение х ²+у²=(2√10)²          и второе ху=12
Первое будет х²+у²=40
Второе умножим на 2 и сложим с первым уравнением, получим х²+2ху+у²=40+12*2
(х+у)²=64
(х+у)²=8²
х+у=8
Периметр Р=2(х+у)=2*8=16 м
Автор ответа: Hrisula
0

Определите периметр прямоугольника,  если его диагональ равна 2√10 м, а площадь 12 м²

Вариант решения (если уже знакомы с теоремой косинусов)

Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм,  можно найти разными способами, в том числе по формуле 

S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними. 

В прямоугольнике диагонали равны, поэтому 

S=0,5•d²•sin α

12=0,5•(2√10)²•sin α⇒

sin α=2S:d²=24: 40=0,6

sin²α+cos²α=1

cos α=√(1-0,36)=0,8 

Теорема косинусов. 

Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними

Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.

Пусть данный прямоугольник АВСД, и О – точка пересечения  его диагоналей.

АВ²=ВО²+АО²-2•BO•AO•cos α

В прямоугольнике  диагонали  равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10

Тогда

  AB²=10+10-2•(√10)•(√10)•0,8⇒

АВ²=4

АВ=СД=2 м

Из другой формулы площади прямоугольника

  S=a•b найдем вторую сторону:

S=АД•AB

12=АД•2

ВС=АД=12:2=6 м

Р=2(AB+BC)=16 м

Приложения:
Автор ответа: Аноним
0
очень запутано не понял
Автор ответа: Hrisula
0
Добавлено пояснений, чтобы было понятно, если еще не изучали теорему косинусов.
Похожие вопросы
Предмет: Химия, автор: masha756739