Предмет: Алгебра,
автор: Chata
число 12 представьте в виде суммы двух неотрицательных слагаемых так чтобы произведение квадрато обного из них на удвоенное другое слагаемое было наибольшим.
Ответы
Автор ответа:
0
делаем методом подбора. число 12 можно представить в виде сумм всех чисел от 1 до 11 и от 11 до 1. сразу первое слагаемое возводим в квадрат, а второе удваиваем и умножаем их:
1^2*(2*11)=22
2^2*(2*10)=80
3^2*(2*9)=162
4^2*(2*8)=256
5^2*(2*7)=350
6^2*(2*6)=432
7^2*(2*5)=490
8^2*(2*4)=512
9^2*(2*3)=486
10^2*(2*2)=400
11^2*(2*1)=363
как мы видим, наибольшее прозведение 8^2*(2*4)=512.
Похожие вопросы
Предмет: Математика,
автор: MatveiMata08
Предмет: Окружающий мир,
автор: aniss31
Предмет: Информатика,
автор: poze2god13
Предмет: Математика,
автор: Саша3М