Предмет: Алгебра, автор: IR72016

Как решать??? 0_o Что делать???

Приложения:

Ответы

Автор ответа: nafanya2014
0
ОДЗ:
х>0
2-x>0
Получаем 0<x<2
Перейти к другому основанию, например 10:

 frac{ frac{lg(2-x)}{lg9} - frac{lg(2-x)}{lg15} }{ frac{lgx}{lg15} - frac{lgx}{lg25} } = frac{ frac{(lg(2-x))cdot(lg15-lg9)}{lg9cdot lg15} }{frac{(lgx)cdot(lg25-lg15)}{lg15cdot lg25} } = frac{ frac{(lg(2-x))cdot lg frac{15}{9} }{lg9cdot lg15} }{frac{(lgx)cdot lg frac{25}{15} }{lg15cdot lg25} } =

frac{ frac{(lg(2-x))cdot lg frac{5}{3} }{lg9cdot lg15} }{frac{(lgx)cdot lg frac{5}{3} }{lg15cdot lg25} } = frac{lg25cdot lg(2-x)}{lg9cdot lgx}

Справа
log_{25}9= frac{lg9}{lg25}

Неравенство примет вид
frac{lg25cdot lg(2-x)}{lg9cdot lgx}  leq  frac{lg9}{lg25}

или
frac{ lg(2-x)}{lgx} leq (frac{lg9}{lg25})^2  \  \ log_x(2-x) leq log^2_{25}9

Так как
 log_{25}9=log_{5^2}3^{2}=log_53
то
 log_x(2-x) leq log^2_{5}3

log_x(2-x) leq log^2_{5}3cdot log_xx \  \log_x(2-x) leq  log_x^{log^2_{5}3}

1) если х>1, а с учетом ОДЗ х∈(1;2)
логарифмическая функция возрастает и большему значению функции соответствует большее значение aргумента
2-x leq x^{log^2_{5}3}
2) если 0<x<1, то
2-x geq x^{log^2_{5}3}
Автор ответа: IR72016
0
Спасибо, а что дальше делать
Похожие вопросы
Предмет: Английский язык, автор: ernursaduarbek2
A great summer vacation.

I just returned from the greatest summer vacation! It was so fantastic, I never wanted it to end. I spent eight days in Paris, France. My best friends, Henry and Steve, went with me. We had a beautiful hotel room in the Latin Quarter, and it wasn’t even expensive. We had a balcony with a wonderful view.

We visited many famous tourist places. My favorite was the Louvre, a well-known museum. I was always interested in art, so that was a special treat for me. The museum is so huge, you could spend weeks there. Henry got tired walking around the museum and said “Enough! I need to take a break and rest.”

We took lots of breaks and sat in cafes along the river Seine. The French food we ate was delicious. The tea was tasty, too. Steve’s favorite part of the vacation was the hotel breakfast. He said he would be happy if he could eat croissants like those forever. We had so much fun that we’re already talking about our next vacation!


Please answer the following questions of understanding. Tick the correct answer.

1. What city did they go to for their summer vacation?

A. Latin

B. Lyon

C. Paris

D. Louvre


2. How long was the summer vacation?

A. 8 days

B. 8 weeks

C. 2 weeks

D. 1 week


3. What did their hotel room have?

A. A refrigerator

B. A balcony

C. A cup of tea

D. A view of the metro


4. Who got tired walking in the Louvre museum?

A. Henry

B. Seine

C. Harry

D. Steve


5. What did Steve enjoy the most?

A. The Latin Quarter and the balcony

B. The hotel breakfast and the croissants

C. The tea and the food

D. The cafes along the river Seine
Предмет: Математика, автор: irinanirvanaa
Предмет: Литература, автор: kopilovaarina
Предмет: Математика, автор: psix4354