Предмет: Математика, автор: ryaban

Биссектрисы углов B и C параллелограмма ABCD пересекаются в точке M , лежащей на стороне AD . Докажите, что M — середина AD .

Ответы

Автор ответа: natali15medved
0
Рассмотрим ΔABM ∠ABM=∠AMB, так как ∠ABM=∠MBC (Биссектриса BM делит угол В пополам), ∠AMB=∠MBC они накрест лежащие) Получим, что углы при основании ΔABM равны ⇒ΔABM равнобедренный⇒AB=AM
Рассмотрим теперь ΔMDC Используя тот же подход, получим, что MD=DC⇒AM=MD⇒M-середина отрезкаAD
Похожие вопросы
Предмет: Математика, автор: nikavika202