Предмет: Математика, автор: user512

Помогите решить, пожалуйста:
2cos^2(2x)-√3sin4x+sin2x-√3cos2x-5=0

Ответы

Автор ответа: mefody66
0
2cos^2(2x)- sqrt{3}sin(4x) +sin(2x)- sqrt{3}cos(2x) -5=0
2cos^2 (2x) - 1 = cos(4x), поэтому получается
cos(4x)- sqrt{3}sin(4x) +sin(2x)- sqrt{3}cos(2x) -4=0
2*( frac{1}{2}cos(4x)-  frac{sqrt{3}}{2}sin(4x))+2*(frac{1}{2}sin(2x) -frac{sqrt{3}}{2}cos(2x)) -4=0
2(cos frac{ pi }{3} cos(4x)-  sin frac{ pi }{3} sin(4x))+2(sin frac{ pi }{6} sin(2x) -cos frac{ pi }{6} cos(2x)) -4=0
Делим все на 2 и меняем знак во 2 скобке
(cos frac{ pi }{3} cos(4x)- sin frac{ pi }{3} sin(4x))-(cos frac{ pi }{6} cos(2x)-sin frac{ pi }{6} sin(2x)) -2=0
В обоих скобках косинус суммы
cos (4x+frac{ pi }{3} )-cos(2x+frac{ pi }{6}) -2=0
Замена y=2x+frac{ pi }{6}, тогда 4x+frac{ pi }{3} =2y
cos(2y) - cos(y) - 2 = 0
2cos^2(y)-1-cos(y)-2=0
2cos^2(y)-cos(y)-3=0
Квадратное уравнение относительно cos(y)
D=1 - 4*2(-3) = 25 = 5^2
cos(y) = (1 - 5)/4 = -4/4 = -1
y1 = pi + 2pi*n = 2x + pi/6; x1 = 5pi/12 + pi*n
cos(y) = (1 + 5)/4 = 6/4
Решений нет.
Ответ: x = 5pi/12 + pi*n
Похожие вопросы