Предмет: Геометрия, автор: spasibo1vsem

ПОМОГИТЕ С ЧЕРЧЕЖЕМ И РЕШЕНИЕМ
Хорды AB и CD пересекаются в точке Е так, что АЕ =3, ВЕ = 36, СЕ: DE= 3:4. Найдите CD и наименьшее значение радиуса этой
окружности

Ответы

Автор ответа: alapetrova9021
0
По теореме о двух пересекающихся хордах произведение отрезков одной хорды равно произведению отрезков другой, пересекающейся с ней.  Пусть коэффициент отношения СЕ:DE=x  Тогда АЕ*ВЕ=3х*4х 12х² =108 х=3см CD=3x+4x=7х=7*3=21 см Наименьшим значением радиуса данной окружности будет половина большей из данных хорд при условии, что она - диаметр ( меньшая  хорда по понятной причине  не может быть диаметром). Следовательно, при диаметре АВ  радиус  r=(36+3):2=39:2=19,5 Если диаметр больше хорды АВ, то  радиус не будет иметь наименьшее из возможных значений
Похожие вопросы
Предмет: Математика, автор: zulikarimova1985
Предмет: Математика, автор: Gaysar2014