Предмет: Геометрия, автор: krenyaa

Напишите доказательство, что угол между касательной к окружности и хордой равен половине дуги, заключенной в это углу.

Ответы

Автор ответа: Apelsinka1748
0

Рассмотрим меньший из углов между хордой AB и касательной к окружности в точке B (см рис). Пусть BD - диаметр окружности. Поскольку BD перпендикулярен к касательной, угол ABD дополняет до 90° рассматриваемый угол между хордой AB и касательной. Но по теореме  угол BAD прямой. Значит, угол ADB также дополняет до 90° угол ABD. Таким образом, рассматриваемый угол равен углу ADB и измеряется (по теореме 5.3) половиной указанной дуги.

Для полноты доказательства надо рассмотреть и второй - больший угол между AB и касательной. Этот угол - смежный с рассмотренным - дополняет его до 180° и измеряется половиной большей дуги, задаваемой хордой AB.

Похожие вопросы