Предмет: Алгебра,
автор: Warden11
Прошу помощи! Решите уравнение:
Ответы
Автор ответа:
0
(log2(4x))^2+log2(x^2/8) =8
ОДЗ: x>0
(log2(4)+log2(x))(log2(4)+log2(x))+ log2(x^2)-log2(8)=8
(2+log2(x))*(2+log2(x))+2log2(x)-3=8
4+2log2(x)+2log2(x)+(log2(x))^2+2log2(x)=11
(log2(x))^2+6log2(x)-7=0
Замена: log2(x)=t
t^2+6t-7=0
D=6^2-4*1*(-7)=64
t1=(-6-8)/2=-7
t2=(-6+8)/2=1
Обратная замена:
1)log2(x)=-7
x=2^-7
x=1/128
2)log2(x)=1
x=2
Ответ: 1/128; 2
ОДЗ: x>0
(log2(4)+log2(x))(log2(4)+log2(x))+ log2(x^2)-log2(8)=8
(2+log2(x))*(2+log2(x))+2log2(x)-3=8
4+2log2(x)+2log2(x)+(log2(x))^2+2log2(x)=11
(log2(x))^2+6log2(x)-7=0
Замена: log2(x)=t
t^2+6t-7=0
D=6^2-4*1*(-7)=64
t1=(-6-8)/2=-7
t2=(-6+8)/2=1
Обратная замена:
1)log2(x)=-7
x=2^-7
x=1/128
2)log2(x)=1
x=2
Ответ: 1/128; 2
Похожие вопросы
Предмет: Алгебра,
автор: ket200712
Предмет: Информатика,
автор: vovanin1993
Предмет: История,
автор: sofia7478
Предмет: Математика,
автор: domuralieva34