Предмет: Математика,
автор: kochashlena
Окружности радиусов 36 и 45 касаются внешним образом. Точки А и В лежат на первой окружности,точки С и Д- на второй. При этом Ас и ВД-общие касательные окружностей. Найдите расстояние между прямыми АВ и СД. Помогите пожалуйста!!!
Ответы
Автор ответа:
0
Отрезки АВ, АО, ОО1 и О1В (где о и о1 - центры окружностей) образуют трапецию, поскольку радиусы, проведенные к точке касания, перпендикулярны к касательным. Следовательно АО и ВО1, перпендикулярные к одной прямой, параллельны. При этом боковая сторона этой трапеции ОО1 равна сумме радиусов, т.е. 81.
Проведем отрезок, соединяющий АК перпендикулярный ВО1. Получим прямоугольный треугольник, в котром АС - гипотенуза, АК - катет, равный сумме радиусов, т.е. 81, а ВК - катет, равный разности радиусов, т.е. 9. По теореме Пифагора находим АС. Точно также находим ВД, хотя заранее ясно, что АС=ВД.
Проведем отрезок, соединяющий АК перпендикулярный ВО1. Получим прямоугольный треугольник, в котром АС - гипотенуза, АК - катет, равный сумме радиусов, т.е. 81, а ВК - катет, равный разности радиусов, т.е. 9. По теореме Пифагора находим АС. Точно также находим ВД, хотя заранее ясно, что АС=ВД.
Автор ответа:
0
Спасибо огромное!☺
Похожие вопросы
Предмет: Математика,
автор: 9068578467
Предмет: Биология,
автор: lerka19593
Предмет: География,
автор: lovushkajokera78
Предмет: История,
автор: dadnik164
Предмет: Математика,
автор: vitalylot1