Предмет: Геометрия, автор: SoDeadlyFire

Длины сторон треугольника ABC относятся как 5:5:6. Точки M, P и N - середины сторон треугольника.Площадь треугольника NMP равна 48. Найти периметр треугольника ABC.

Ответы

Автор ответа: Hrisula
0
МР=АС:2, MN=BC:2, PN=AB:2, МР, PN и MN- средние линии ∆ АВС. ⇒ 
∆ ВМР и ∆ АВС подобны ( легко докажете сами)
Коэффициент подобия   k=1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия. 
S1:S=k²=1/4
Тогда S∆ ABC=48*4=192
Пусть коэффициент отношения сторон ∆АВС будет а
Тогда АВ=ВС=5а, АС=6а
Опустим из В высоту на АС. В равнобедренном треугольнике высота еще и медиана и биссектриса, ⇒АN=CN=3a.
Найдем по т.Пифагора высоту:
BN=√(AB²-AN²)=√16a²=4a
По формуле площади треугольника 
S ∆ ABC=4a*6a:2=12a²
12a²=192
a²=16
a=√16=4
P=5а+5а+6а=16а
Р=16*4=64
-------
Можно площадь ∆ АВС найти несколько иначе: 
МР, PN и MN- средние линии ∆ АВС. Они делят ∆ АВС на 4 равных треугольника. : S ∆ ABC=48*4=192


Приложения:
Похожие вопросы
Предмет: Алгебра, автор: 33magazina
Предмет: Литература, автор: elshanshabanov