Предмет: Геометрия,
автор: davidkopytov
Решите задачу:Из одной точки проведены две касательные к окружности. Докажите, что отрезки касательных, заключенных между этой точки и тачками касания равны
Ответы
Автор ответа:
0
Обозначим точку, из которой проведены касательные - А, а точки касания - В и С. Отметим также центр окружности О. Имеем два прямоугольных треугольника АВО и АСО с прямыми углами В и С соответственно. У них АО - общая, а ОВ и ОС равны как радиусы одной окружности. Таким образом, рассматриваемые треугольники равны по гипотенузе и катету. Следовательно, равны и другие катеты - АВ и АС.
Похожие вопросы
Предмет: Қазақ тiлi,
автор: Аноним
Предмет: Русский язык,
автор: arseniibabenko
Предмет: Математика,
автор: ruslanimbaev8
Предмет: История,
автор: adegej27
Предмет: География,
автор: usndvdjsjbshdsk