Предмет: Математика, автор: Shelti18

Помогите с задачей, пожалуйста.
Из пункта А вниз по реке отправился плот. Через 1 ч навстречу ему из пункта В, находящегося в 30 км от А, вышла моторная лодка, которая встретилась с плотом через 2 ч после своего выхода. Найдите собственную скорость лодки, если скорость течения реки 2 км/ч.

Ответы

Автор ответа: ntoskyeva
0

Делаю системой:

Пусть С - расстояние пройденное лодкой до встречи за 2 часа, а х - собственная скорость лодки, тогда х - 2 - скорость лодки при движении против течения.
С = 2·(х-2)
Плот проплыл по течению со скорость 2 км/ч три часа до встречи и преодолел расстояние 30 - С:
30 - С = 2·(2 + 1)
24=2x-4
2x=28
x=14 км/ч
Ответ:14 км/ч.
Автор ответа: ntoskyeva
0
ПИШИ ИМЕННО ТАК:ПУСТЬ С ........ КАК ВВЕРХУ ЭТО ПРАВИЛЬНО,УДАЧИ
Автор ответа: zhenyaM2002
0
Плот может плыть только по течению реки и с её скоростью :
Скорость плота  V1= Vт = 2 км/ч
Время в пути плота t1= (2+1) =3 часа
Расстояние, которое он проплывет до момента встречи:
S1= 2*3  = 6 км 

Если лодка плывет навстречу плоту ⇒ против течения реки:
Собственная скорость лодки  Vc= x км/ч
Скорость  против течения   V пр.т. = (х-2) км/ч
Время в пути  -  t2 = 2 часа
Расстояние, которое она проплывет до момента встречи:
S2= 2(x-2)  км

Расстояние между пунктами : S= S1+S2= 30 км. 
Уравнение.
6 + 2(х-2) =30
6+2х-4=30
2+2х=30
2х=30-2
2х=28
х=14  км/ч  - собственная скорость лодки

Ответ: 14 км/ч.
Похожие вопросы
Предмет: Математика, автор: tnursulu0
Предмет: Русский язык, автор: rorornzdun
Предмет: Литература, автор: Аноним