Предмет: Математика,
автор: Аня1807
Напишите уравнение касательной к графику функции y=sinx в точке с абсциссой xo=П/2.
Буду очень рада и благодарна.
Ответы
Автор ответа:
0
Уравнение касательной в точке с абсциссой х₀:
y-f(x₀)=f'(x₀)(x-x₀)
Значение х₀=π/2 дано в условии.
Теперь вычислим значение функции в этой точке
f(π/2)=sin(π/2)=1
Далее находим производную
f'(x)=(sinx)'=cosx
И находим значение производной в точке х₀
f'(π/2)=cos(π/2)=0
Подставляем значения х₀=π/2, f(x₀)=1,f'(x₀)=0 в формулу касательной
y-1=0(x-π/2)
y-1=0
Получили уравнение касательной:
y=1
то есть прямая параллельная оси абсцисс, проходящая через точку 1.
Хотя можно было написать уравнение опираясь на простые рассуждения. Функция sinx - это периодическая бесконечная функция с периодом 2π, ограниченная -1<sinx<1, имеющая в точке π/2 значение 1. Значит касательная в этой точке может быть только прямая у=1.
y-f(x₀)=f'(x₀)(x-x₀)
Значение х₀=π/2 дано в условии.
Теперь вычислим значение функции в этой точке
f(π/2)=sin(π/2)=1
Далее находим производную
f'(x)=(sinx)'=cosx
И находим значение производной в точке х₀
f'(π/2)=cos(π/2)=0
Подставляем значения х₀=π/2, f(x₀)=1,f'(x₀)=0 в формулу касательной
y-1=0(x-π/2)
y-1=0
Получили уравнение касательной:
y=1
то есть прямая параллельная оси абсцисс, проходящая через точку 1.
Хотя можно было написать уравнение опираясь на простые рассуждения. Функция sinx - это периодическая бесконечная функция с периодом 2π, ограниченная -1<sinx<1, имеющая в точке π/2 значение 1. Значит касательная в этой точке может быть только прямая у=1.
Похожие вопросы
Предмет: Другие предметы,
автор: ibrohommaksutov
Предмет: Геометрия,
автор: ymn68
Предмет: Обществознание,
автор: sonya122ivanova
Предмет: Математика,
автор: dariavaganova20
Предмет: Биология,
автор: Лианка58