Предмет: Алгебра, автор: 30333

Составить уравнение касательной и нормали к кривой y=5/3(x^3)-5-8 в точке x=2

Ответы

Автор ответа: ждлорп
0

Уравнение касательной к графику функции  в точке  имеет вид:



1. Вычисляем значение функции  в точке :

нy(x)=f(2)`*(x-2)+f(2)



2. Вычисляем производную функции :

f(2)=1/3



3. Вычисляем значение производной  в точке :

(f(2))`=20



Таким образом, уравнение касательной имеет вид:

y(x)=20 cdot (x-2)+1/3



Немного упрощая, получаем:

20x-119/3


Ответ:

Уравнение касательной к графику функции  в точке  имеет вид:

20x-119/3

 

Уравнение нормали к графику функции  в точке  имеет вид:

y(x)=-frac{x-2}{(f(2))`}+f(2)

1. Вычисляем значение функции  в точке :

 

f(2)=1/3



2. Вычисляем производную функции :

(f(x))`=5x^2



3. Вычисляем значение производной  в точке :


(f(2))`=20

Таким образом, уравнение нормали имеет вид:

y(x)=-frac{1}{20}(x-2)+frac{1}{3}



Немного упрощая, получаем:

y(x)=-frac{x}{20}+frac{13}{20}


Ответ:

Уравнение нормали к графику функции  в точке  имеет вид:

 

y(x)=-frac{x}{20}+frac{13}{20}

 

 

Похожие вопросы
Предмет: История, автор: zajnabovazajnab
Предмет: Биология, автор: kendallfanjenner13