Предмет: Математика, автор: omidamaruchan

 Найти предел функий                             При a)x0=1 b)x0=-2 c)x0=бесконечности; Только при x стремящийся к -2 нужно.

 

 

lim       (2x^2+3x-2)/(3x^2+7x+2)

x>-2

 

 

 

 

 

Ответы

Автор ответа: DRVal
0

lim(x->-2) (2 x^2+3 x-2)/(3 x^2+7 x+2)
= lim(x->-2)((x+2)(2x-1))/((x+2)(3x+1)) |x-2 не рано 0
= lim(x->-2)(2x-1)/(3x+1)
= (lim(x->-2)(2x-1))/(lim(x->-2)(3x+1))
= -5/-5
= 1

 

lim(x->0) (2 x^2+3 x-2)/(3 x^2+7 x+2)=

=lim(x->0) (2*0+3*0-2)/(3*0+7*0+2)=

lim(x->0) -2/2=-1

 

lim(x->+inf) (2x^2+3x-2)/(3x^2+7x+2)= |разд. числ и знам на x^2<>0

lim(x->+inf) (2+3/x-2/x^2)/(3+7/x+2/x^2)=

(2+0+0)/(3+0+0)=2/3

 

Похожие вопросы
Предмет: Физика, автор: arsenkan200717
Предмет: История, автор: iluIIIka