Предмет: Алгебра, автор: Tanzila15

первая труба наполняет резервуар на 48 минут дольше,чем вторая.Обе трубы ,работая одновременно наполняют этот же резервуар на 45 минут.За сколько минут наполнят этот резервуар одна вторая труба???

Ответы

Автор ответа: sofya142
0
Пусть объем резервуара будет один, количество минут, за которое его наполнит вторая труба равно х минут, тогда первая труба справится с этим за (х + 48) минут. Производительность второй трубы составит 1/х, а первой - 1/(х + 48). Вместе этот объем они наполнят его за 45 минут.
Составляем уравнение:
( frac{1}{x} +  frac{1}{x+48})*45 = 1
 frac{45}{x} + frac{45}{x+48} - 1 = 0
Приводим к общему знаменателю:
 frac{45x + 45(x+48) - x(x+48)}{x(x+48)} = 0
Раскрываем скобки и отбрасываем знаменатель:
45x + 45x + 2160 - x^{2} - 48x = 0
Получаем квадратное уравнение:
- x^{2} + 42x + 2160 = 0
x^{2} - 42x - 2160 = 0
D = 42*42 +4*1*2160 = 1764 + 8640 = 10404
 sqrt{D} =  sqrt{10404} =+- 102
 x_{1} =  frac{42 + 102}{2} = 72 минут
 </span>x_{2} =  frac{42 - 102}{2} = -30 - не подходит
Вторая труба наполнит резервуар за 77 минут, а первая за 72+48=120 минут.
Похожие вопросы
Предмет: Математика, автор: DukaSpyro