Предмет: Алгебра,
автор: нннннннннннннннн
Найдите сумму четырёх первых членов геометрической прогрессии , в которой в2=6, в4=24, знаменатель больше нуля.
Ответы
Автор ответа:
0
b2=6,b4=24, s4=?
b4=b2.qˇ2, qˇ2=b4/b2, qˇ2=24/6,.qˇ2=4, q=2 (q=-2 net bolše Hylja)
s4=b1.(qˇ4-1)/(q-1)
b1=b2/q, b1=6/2=3
s4=3.(2ˇ4-1)/(2-1)=3.(16-1)/1=3.15=45
s4=45
3+6+12+24=45
b4=b2.qˇ2, qˇ2=b4/b2, qˇ2=24/6,.qˇ2=4, q=2 (q=-2 net bolše Hylja)
s4=b1.(qˇ4-1)/(q-1)
b1=b2/q, b1=6/2=3
s4=3.(2ˇ4-1)/(2-1)=3.(16-1)/1=3.15=45
s4=45
3+6+12+24=45
Похожие вопросы
Предмет: Обществознание,
автор: dashaejowa
Предмет: История,
автор: ddadasa09
Предмет: Математика,
автор: kakakakaka56
Предмет: Геометрия,
автор: komandormaster1