Предмет: Алгебра,
автор: ширханн
9x^2+24xy+16y^2=(3+4y)^2 объясните как получили такой ответ (3+4y)^2
Ответы
Автор ответа:
0
9x^2+24xy+16y^2=(3x+4y)^2
Это формула квадрата суммы:
(a+b)^2=a^2+2ab+b^2
Это формула квадрата суммы:
(a+b)^2=a^2+2ab+b^2
Автор ответа:
0
мне нужен точный ответ как получили (3+4y)^2
Автор ответа:
0
что сделали
Автор ответа:
0
умножили или разложили
Автор ответа:
0
49-(m-7)^2=7^2-(m-7)^2=(7-(m-7))*(7+(m-7)=
(7-m+7)*(7+m-7)=(14-m)*m=14m-m^2
Денис
169-(m+11)=13^2-(m+11)=(13-(m+11)*(13+(m+11)=
=(13-m-7)*(13+m+7)=(6-m)+(20+m)
(7-m+7)*(7+m-7)=(14-m)*m=14m-m^2
Денис
169-(m+11)=13^2-(m+11)=(13-(m+11)*(13+(m+11)=
=(13-m-7)*(13+m+7)=(6-m)+(20+m)
Автор ответа:
0
а ты можешь проверить это правильно
Автор ответа:
0
(a + b)² = a² + 2ab + b² — формула квадрата суммы;
(a — b)² = a² — 2ab + b² — соответственно, формула квадрата разности.
9x² + 24xy + 16y²
Солдаты-квадраты (9x² и 16y²), как называет их мой учитель, стоят на своих местах, а в середине многочлена — их удвоенное произведение (2 × 3x × 4y); значит, смело можно утверждать, что перед нами квадрат суммы 3x и 4y, записывающийся так: (3x + 4y)², или, раскладывая на множители, (3x + 4y)(3x + 4y).
Проверка: (3x + 4y)(3x + 4y) = 9x² + 12xy + 12xy + 16y² = 9x² + 24xy + 16y². Мы получили то же выражение. Значит, мы всё решили правильно.
[Из комментариев]:
49 — (m — 7)² = 7² — (m — 7)² = (7 — m + 7)(7 + m — 7) = (14 — m)m = 14m — m²
169 — (m + 11) = 169 — m — 11... И всё же я полагаю, что в данном выражении (m + 11) берут в квадрат, а не как ты написал.
169 — (m + 11)² = 13² — (m + 11)² = (13 — m — 11)(13 + m + 11) = (2 — m)(24 + m)
(a — b)² = a² — 2ab + b² — соответственно, формула квадрата разности.
9x² + 24xy + 16y²
Солдаты-квадраты (9x² и 16y²), как называет их мой учитель, стоят на своих местах, а в середине многочлена — их удвоенное произведение (2 × 3x × 4y); значит, смело можно утверждать, что перед нами квадрат суммы 3x и 4y, записывающийся так: (3x + 4y)², или, раскладывая на множители, (3x + 4y)(3x + 4y).
Проверка: (3x + 4y)(3x + 4y) = 9x² + 12xy + 12xy + 16y² = 9x² + 24xy + 16y². Мы получили то же выражение. Значит, мы всё решили правильно.
[Из комментариев]:
49 — (m — 7)² = 7² — (m — 7)² = (7 — m + 7)(7 + m — 7) = (14 — m)m = 14m — m²
169 — (m + 11) = 169 — m — 11... И всё же я полагаю, что в данном выражении (m + 11) берут в квадрат, а не как ты написал.
169 — (m + 11)² = 13² — (m + 11)² = (13 — m — 11)(13 + m + 11) = (2 — m)(24 + m)
Автор ответа:
0
49-(m-7)^2=7^2-(m-7)^2=(7-(m-7))*(7+(m-7)=
(7-m+7)*(7+m-7)=(14-m)*m=14m-m^2
Денис
169-(m+11)=13^2-(m+11)=(13-(m+11)*(13+(m+11)=
=(13-m-7)*(13+m+7)=(6-m)+(20+m)
(7-m+7)*(7+m-7)=(14-m)*m=14m-m^2
Денис
169-(m+11)=13^2-(m+11)=(13-(m+11)*(13+(m+11)=
=(13-m-7)*(13+m+7)=(6-m)+(20+m)
Автор ответа:
0
это правильно
Автор ответа:
0
ау
Автор ответа:
0
ты слышишь
Похожие вопросы
Предмет: Физика,
автор: nikita8926092
Предмет: История,
автор: petyaton4ik
Предмет: Математика,
автор: asya942
Предмет: Геометрия,
автор: Zai4ik1
Предмет: Алгебра,
автор: gerakovna