Предмет: Алгебра,
автор: DevilK
найти тангенс угла наклона касательной к графику функции f(x)=x^3+27 в точке пересечения этого графика с осью OX
Ответы
Автор ответа:
0
Решение
f`(x) = x³ + 27
Находим точку пересечения с осью абсцисс (y=0)
x³ + 27 = 0
x³ = - 27
x₀ = - 3
Находим производную производную функции
f '(x) = 3x²
угловой коэффициент касательной равен:
tg a = f '(x₀) = 3*(- 3)² = 27
Ответ: tg a = 27
f`(x) = x³ + 27
Находим точку пересечения с осью абсцисс (y=0)
x³ + 27 = 0
x³ = - 27
x₀ = - 3
Находим производную производную функции
f '(x) = 3x²
угловой коэффициент касательной равен:
tg a = f '(x₀) = 3*(- 3)² = 27
Ответ: tg a = 27
Похожие вопросы
Предмет: Английский язык,
автор: zhaidana01
Предмет: Математика,
автор: ketimusailova11
Предмет: Қазақ тiлi,
автор: Fiona458
Предмет: Геометрия,
автор: 777darya777
Предмет: Математика,
автор: nikitanen