Очень сложная задача,я ее решил,но у меня ответы просто ужасные получились, просьба посмотреть и решить: Найдите все значения параметра k, при которых прямая y=kx+4 имеет не менее трех различных точек с графиком функции y=| |4x-5|-1 |
Ответы
И так решаеца так
строим получаем 3 линии
нам задана линия вида кх+4
значит в нуле эта прямая находиться в (0,4)
теперь нужно подумать как расположить прямую чтобы она пересекала все три линии
чем К больше тем она ближе находится к оси оУ, сначала прикинем каком будет К
чтобы линия пересекала углол нижий левый это точка (-2,2)
строим уравнение линии проходящей через (0,4) и (2.2) а это находиться из уравнений (y-y0)/(y1-y0)=(x-x0)/(x1-x0)
у нас точки (x0,y0) (x1,y1) подставляем в уравнение находим что y=3x+4
и так получаеца что при чуть больше 3, чтобы пересекать 3 линии, а не только точку пересечения (-2.-2) и третью линию (ту что справа).
а теперь вопрос, какой максимальный к?
к по идее коэффициент роста линии, если K доростет до 5, то он станет паралленым нижней левой линии
и никогда не пересечет её, аналогично если будет больше пяти ,то не пересекет нижнюю левую.
а ну и ответ
K принадлежит от (3 ;5 )
Найдём угл коэфф прямой , проходящей через точки (0,4) и (-2,-2). Это прямая у=6х+4. Значит уг.коэфф = 6. Но тогда эта прямая пересечёт график в двух точках.
Cледовательно 5