Предмет: Алгебра, автор: ждлорп

Найти угловые коэффициенты касательных к графику функции f(x)=-4/x, пересекающих прямую у=х в точке с абциссой х=-1

Ответы

Автор ответа: Гоша68
0

f'(x)=4/x^2

f'(x0)=4/x0^2

f(x0)=-4/x0

y=f(x0)+f'(x0)(x-x0)

-1=-4/x0+4/x0^2(-1-x0)

-x0^2+4x0+4*(1+x0)=0

-x0^2+8x0+4=0

x0^2-8x0-4=0

x0=4+-sqrt(20)=4+-2sqrt(5)

f'(4+2sqrt(5))=1/(2+sqrt(5))^2=1/(9+4sqrt(5))=9-4sqrt(5)

k1=9-4sqrt(5)

f'(4-2sqrt(5))=1/(9-4sqrt(5))=9+4sqrt(5)

k2=9+4sqrt(5)

 

 

Похожие вопросы