Предмет: Геометрия,
автор: nikolaev99
длины сторон прямоугольника равны 8и6см, через точку О пересечения его диагоналей проведена прямая ОК, перпендикулярная его плоскости. Найдите расстояние от точки К до вершины прямоугольника, если ОК=12см
Ответы
Автор ответа:
0
АВСД-прямоугольник, его диагонали равны, Точка О-делит их пополам АО=ВО=СО=ДО. проекции наклонных КВ=КА=КС=КД
ТР-ник КОД-прямоугольный (ОК⊥(АВСД, а значит и любой прямой в этой плоскости, проходящей через О)
KD^2=OK^2+OD^2
из тр-ника АВД : ВД^2=AB^2+AD^2; BD=√(6^2+8^2)=√(36+64)=10
DO=1/2*10=5
KD=√(12^2+5^2)=√144+25)=√169=13
Ответ. 13
ТР-ник КОД-прямоугольный (ОК⊥(АВСД, а значит и любой прямой в этой плоскости, проходящей через О)
KD^2=OK^2+OD^2
из тр-ника АВД : ВД^2=AB^2+AD^2; BD=√(6^2+8^2)=√(36+64)=10
DO=1/2*10=5
KD=√(12^2+5^2)=√144+25)=√169=13
Ответ. 13
Похожие вопросы
Предмет: Информатика,
автор: lolik233l
Предмет: Геометрия,
автор: Аноним
Предмет: Математика,
автор: garabovv
Предмет: Математика,
автор: manovar0
Предмет: Математика,
автор: 2001ana