Предмет: Геометрия,
автор: 30qwertgavr1234598
Решите пожалуйста . Мне нужно подробное решение очень прошу в течение 15 минут нужно . В треугольнике ABC проведены высоты AP и BQ которые пересекаются в точке M найдите угол CAB в градусах, если углы ABC =67 градусов
,amb=139 градусов
Ответы
Автор ответа:
1
Вот что то тип єтого
...
...
Приложения:
NeverMore73:
этого*
Автор ответа:
1
∠AMB и ∠BMP - смежные, их сумма равна 180°
∠AMB + ∠BMP = 180°
∠BMP = 180° - ∠AMB
∠BMP = 180° - 139°
∠BMP = 41°
Рассмотрим ΔMBP:
∠MPB = 90° (т.к. AP - высота)
∠BMP = 41°
Сумма углов в треугольнике равна 180°
∠BMP + ∠MPB + ∠MBP = 180°
∠MBP = 180° - ∠BMP - ∠MPB
∠MBP = 180° - 41° - 90°
∠MBP = 49°
Рассмотрим ΔQBC:
∠QBC=∠MBP = 49°
∠BQC = 90° (т.к. BQ - высота)
Сумма углов в треугольнике равна 180°
∠BQC + ∠QCB + ∠QBC = 180°
∠QCB = 180° - ∠BQC - ∠QBC
∠QCB = 180° - 90° - 49° = 41°
Рассмотрим ΔABC:
∠ACB=∠QCB = 41°
∠ABC = 67°(по условию)
Сумма углов в треугольнике равна 180°
∠CAB + ∠ABC + ∠ACB = 180°
∠CAB = 180° - ∠ABC - ∠ACB
∠CAB = 180° - 67° - 41°
∠CAB = 72°
Ответ: ∠CAB = 72°
∠AMB + ∠BMP = 180°
∠BMP = 180° - ∠AMB
∠BMP = 180° - 139°
∠BMP = 41°
Рассмотрим ΔMBP:
∠MPB = 90° (т.к. AP - высота)
∠BMP = 41°
Сумма углов в треугольнике равна 180°
∠BMP + ∠MPB + ∠MBP = 180°
∠MBP = 180° - ∠BMP - ∠MPB
∠MBP = 180° - 41° - 90°
∠MBP = 49°
Рассмотрим ΔQBC:
∠QBC=∠MBP = 49°
∠BQC = 90° (т.к. BQ - высота)
Сумма углов в треугольнике равна 180°
∠BQC + ∠QCB + ∠QBC = 180°
∠QCB = 180° - ∠BQC - ∠QBC
∠QCB = 180° - 90° - 49° = 41°
Рассмотрим ΔABC:
∠ACB=∠QCB = 41°
∠ABC = 67°(по условию)
Сумма углов в треугольнике равна 180°
∠CAB + ∠ABC + ∠ACB = 180°
∠CAB = 180° - ∠ABC - ∠ACB
∠CAB = 180° - 67° - 41°
∠CAB = 72°
Ответ: ∠CAB = 72°
Похожие вопросы
Предмет: Другие предметы,
автор: Аноним
Предмет: Русский язык,
автор: kairgeldinansar79
Предмет: Химия,
автор: opolog52
Предмет: Русский язык,
автор: hhpandochahh0814
Предмет: Геометрия,
автор: DANILLISTY