Предмет: Геометрия, автор: Klyaksan

Даны прямая m и на ней точки А и В. Проводятся всевозможные пары окружностей, которые касаются друг-друга и касаются прямой m в точках А и В. Найдите множество всех точек касания таких окружностей.


nabludatel00: классная задача. Решение - это окружность с центром в середине отрезка АВ и радиусом = половине АВ, кроме, естественно точек А и В. Они "выколоты". Доказательство чуть длинноватое, нужно подумать.
cos20093: Как раз просто тут :) если через точку касания провести общую касательную, она пересечет AB в её середине (тут ничего не надо доказывать - это просто по свойству касательных из одной точки )
cos20093: То есть точка касания лежит на расстояниb AB/2 от середины AB.
Klyaksan: Спасибо большое!!))))
marshal500: Все верно, задача интересная, но доказательство... Вы исходили из того, что точки касания лежат на окружности, а надо наоборот - точки касания составляют окружность. Это доказывается вполне просто.
cos20093: Мда. Я не исходил... :) Странно, мне казалось, что я предельно ясно объяснил. Есть точки A и B на прямой m, окружности (в произвольном случае, при любых возможных радиусах) касаются друг друга и прямой m. Это означает 1) AB - внешняя общая касательная к окружностям. 2) на линии цетров всегда есть точка внешнего касания этих окружностей
cos20093: В произвольном случае (опять таки) в точке касания существует общая касательная (перпендикулярная линии центров). Эта касательная пересекает прямую AB внутри отрезка AB в какой то точке, которую можно обозначить M. Заметьте - я еще ничего не сказал и не сделал, просто "развил" условие задачи. А вот теперь - наконец - решение. Из свойства касательных к окружности, проведенных из одной точки, MA = ME; и ME = MB; где E - точка касания окружностей
cos20093: То есть 1) MA = MB = AB/2; независимо от радиусов окружностей 2) ME = AB/2; это полное, завершенное и абсолютно точное доказательство того, что все возможные точки E лежат на окружности с центром в середине AB и радиусом AB/2
marshal500: Извините, на свое сообщение я адресовал не Вам, а ответившему.

Ответы

Автор ответа: nabludatel00
2
Решение смотри в файле
Приложения:

Klyaksan: Спасибо большое!)))
Hrisula: Идея решения понятна. Но Ваш ответ больше походит на решение обратной задачи, где доказывается, что построенная окружность является множеством точек касания заданных окружностей..
nabludatel00: Да, в данном случае данное решение- это построение опренделенной окружности и доказательство, что любая точка этой окружности есть решением данной задачи (кроме А и В)
Автор ответа: marshal500
3
   Центры окружностей касательных  прямой m в точках А и В лежат на перпендикулярах к этой прямой проведенных в этих точках.
   Проведем окружности касающиеся друг друга в точке С и прямой в точках А и В.  
   Центры этих окружностей лежат на пересечении перпендикуляров от А и В и серединных перпендикуляров АС и ВС. 
   Проведем касательную прямую СО. Она пересекает прямую АВ в точке О.
   По свойству касательных, проведенных из одной точки ОА=ОС и ОС=ОВ. Значит ОА=ОВ и точка О середина АВ. 
  ОС медиана треугольника АВС.
  Если медиана равна половине стороны к которой проведена, то угол этого треугольника прямой и  треугольник - прямоугольный с гипотенузой равной диаметру окружности описанной вокруг него. 
 Следовательно: множество искомых точек - вершины прямоугольных с общей треугольников гипотенузой АВ описанных окружностью с диаметром АВ.
Приложения:

Hrisula: Центры всех касающихся окружностей лежат в точке пересечения перпендикуляров из А и В и касательной к окружности с диаметром АВ. Кроме, естественно, А и В.
Hrisula: Следовательно: множество искомых точек - вершины прямоугольных треугольников описанных окружностью с диаметром АВ. = Согласна.
cos20093: Странно, что вы все как-то пропустили :) Все разговоры, как расположены центры окружностей, совсем не нужны. Вот все решение в сухом остатке. Пусть C - точка внешнего касания двух окружностей, для которых AB - общая внешняя касательная (A и B - точки касания). В точке С есть общая касательная (перпендикулярная линии центров), которавя пересекает AB в точке M. MA = MC = MB = AB/2; поэтому в любом случае, независимо от радиусов окружностей точка C находится на расстоянии AB/2 от середины AB.
cos20093: то есть - другими словами - на окружности, построенной на AB, как на диаметре. Разговоры, включать точки A и B, или нет - совсем не существенны. А вот то, что угол ACB прямой - это важное следствие, не имеющее отношения к решению :)
Hrisula: Мало какое решение задачи удостаивается такого долгого обсуждения).Требуется найти множество ВСЕХ точек касания. В данном случае множество всех точек касания лежит на окружности с диаметром АВ.
Hrisula: А точки А и В упоминаются как исключение, думаю, для особо дотошных.
Похожие вопросы