Предмет: Геометрия,
автор: Klyaksan
Даны прямая m и точка P вне прямой. Строятся
всевозможные треугольники АВС, у которых вершины А и В
лежат на прямой m, а точка пересечения медиан совпадает с
точкой Р. Найдите множество всех положений точки С.
cos20093:
Это гомотетия прямой m относительно цетра P с коэффициентом -2. то есть прямая, параллельная m.
Ответы
Автор ответа:
3
Множество всех положений точки С есть прямая nIIm. Пусть точка К - середина некоторого отрезка АВ, тогда луч КР совпадает с медианой СК, СР : РК=1:2. Через данную точку С проведем прямую n, nIIm
Все медианы проходят через точку Р и делятся в заданном отношении. Получаем подобные треугольники с коэффициентом подобия 2:1.
СМ. приложение
Все медианы проходят через точку Р и делятся в заданном отношении. Получаем подобные треугольники с коэффициентом подобия 2:1.
СМ. приложение
Приложения:
Похожие вопросы
Предмет: Английский язык,
автор: urijplevako6
Предмет: Математика,
автор: goji8
Предмет: Қазақ тiлi,
автор: ulganymbaubekova1
Предмет: Литература,
автор: linore1999
Предмет: Обществознание,
автор: MariyaVereyalova