Предмет: Геометрия, автор: ktcZxxcv

Докажите что диагональ параллелограмма разбивает его на два равных треугольника.

Ответы

Автор ответа: ЮлияХолод
0

 Как известно, диагонали точкой пересечения делятся пополам, а противоаоложные стороны пар-мма равны. Следовательно, противоположные по отношению друг к другу треугольники равны(по 3-ему признаку равенства треугольников), и площади их тоже равны. 

Осталось доказать, что площади двух "смежных" треугольников равны. Рассмотрим их. Одна сторона у них общая, примем за основание сторону, лежащую на диагонали. Эти стороны у треугольников равны, т.к. точкой пересечения, повторюсь, диагонали делятся пополам. Прощадь треугольника у нас равна половине основания, умноженного на высоту, проведенную к основанию. Проведи к основаниям треугольников высоту - это будет один и тот же отрезок. 

Мы получили - основания у треугольников равны, высоты равны.   

Теорема доказана.

Похожие вопросы