Предмет: Геометрия, автор: DHAcity

Через точку A, лежащую на окружности, проведены касательная AB и хорда AC. На дуге AC, лежащей внутри угла BAC, отмечена точка M так, что ◡AM = ◡MC. Расстояние от точки M до прямой AC равно 10 см. Найдите расстояние от точки M до прямой AB.

Ответы

Автор ответа: Andr1806
0
Пусть расстояние от точки М до прямой АС - перпендикуляр МК=10, а расстояние от точки М до прямой АВ - перпендикуляр МН.
По свойству угла между касательной и хордой
<BAM равен половине дуги, заключенной между касательной АВ и хордой АМ.
<BAC равен половине дуги, заключенной между касательной АВ и хордой АС. Дуги АМ и МС равны (дано)
Значит АМ - биссектриса <BAC и прямоугольные треугольники НАМ и КАМ равны по острому углу и общей гипотенузе АМ. Из этого равенства катеты МН и МК равны.
Ответ: искомое расстояние МН=10.
Автор ответа: oganesbagoyan
0
∠BAM =(дугаAM)/2  как угол между касательной BA и хордой BMж
∠CAM= (дугаMC)/2 (вписанный угол) , но по условию задачи
 (дугаAM)=(дугаMC) ,следовательно ∠BAM =∠CAM ,т.е. AM биссектриса ∠BAC .Каждая точка биссектрисы  ||здесь M∈[AM) ||  неразвернутого угла ||здесь ∠BAC || равноудалена от его сторон
||здесь AB  и AC )|| .

ответ:  d(M,AB) = d(M,AC )  =10 см.

* * *P.S.  понятно под "
дуга.." - имели в виду не длина дуги,  а  градусную меру дуги .
Похожие вопросы
Предмет: Алгебра, автор: Аноним
Предмет: Математика, автор: sultanabylay6