Предмет: Математика, автор: akaktus

В правильной треугольной пирамиде SABC c основанием ABC на медиане СЕ взята точка К так, что СК:КЕ =8:1. Через точку К проведена плоскость, перпендикулярная прямой СЕ и пересекает боковые ребра SА и SB в точках М и N соответственно.
Докажите, что MN : AB = 2:3.

Ответы

Автор ответа: dnepr1
0
Из условия задачи видно, что заданная плоскость вертикальна и параллельна стороне основания АВ.
Тогда отрезок MN параллелен АВ.
Рассмотрим осевое сечение пирамиды ESC.
Точка О - основание высоты пирамиды.
ЕО - часть высоты основания и равно (1/3) её части.
Если вся высота равна 9 частей (по условию задачи), то ЕК равно 1 части и равно 1/3 части от ЕО.
Заданная плоскость пересекает апофему SE грани А
SВ в точке Е₁.
Подобные треугольники ЕЕ₁К и ESO имеют коэффициент подобия 1/3.
Тогда SЕ₁ равно 2/3 от SE и это есть коэффициент подобия треугольников SMN и SAВ.
Поэтому сходственные стороны MN и АВ относятся как 2/3.

Похожие вопросы
Предмет: История, автор: galkeevaman