Предмет: Математика,
автор: Полина2732999
привидите примеры разложенин многочленов на множетели комбинацтей различных способов
Ответы
Автор ответа:
0
Часто бывает полезно преобразовать многочлен так, чтобы он был представлен в виде произведения нескольких сомножителей. Такое тождественное преобразование называется разложением многочлена на множители . В этом случае говорят, что многочлен делится на каждый из этих сомножителей.
При разложении многочленов на множители применяют три основных приёма:
вынесение множителя за скобку, использование формул сокращённого умножения и способ группировки.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1.Способ вынесения множителя за скобки
Вынесение общего множителя за скобку. Из распределительного закона непосредственно следует, что ac+bc=c(a+b). Здесь c является общим множителем, который можно вынести за скобку.
Этим правилом можно воспользоваться для вынесения множителя за скобки.
2.Способ формул сокращённого умножения
Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения.
3.Способ группировки
Сам способ группировки заключается в том, что слагаемые многочлена можно сгруппировать различными способами на основе сочетательного и переместительного законов. На практике он применяется в тех случаях, когда многочлен удаётся представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен окажется представленным в виде произведения
При разложении многочленов на множители применяют три основных приёма:
вынесение множителя за скобку, использование формул сокращённого умножения и способ группировки.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1.Способ вынесения множителя за скобки
Вынесение общего множителя за скобку. Из распределительного закона непосредственно следует, что ac+bc=c(a+b). Здесь c является общим множителем, который можно вынести за скобку.
Этим правилом можно воспользоваться для вынесения множителя за скобки.
2.Способ формул сокращённого умножения
Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения.
3.Способ группировки
Сам способ группировки заключается в том, что слагаемые многочлена можно сгруппировать различными способами на основе сочетательного и переместительного законов. На практике он применяется в тех случаях, когда многочлен удаётся представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен окажется представленным в виде произведения
Похожие вопросы
Предмет: Қазақ тiлi,
автор: ilyapro782
Предмет: Математика,
автор: halisa050819
Предмет: Химия,
автор: nurali1214
Предмет: Информатика,
автор: aliceaxenova
Предмет: Математика,
автор: arsenchikna