Предмет: Алгебра, автор: giyosfariza

найдите все интервалы возрастания функции y=-1/3x^3-x^2+3x-5

Ответы

Автор ответа: 1w2a3l4e5r6i
0
y=-1/3x^3 -x^2 +3x-5
Найдем производную:  y'= -3*1/3 *x^2 -2x +3= -x^2 -2x +3
Чтобы найти критические точки, приравняем производную к нулю:
у'=0  -x^2 -2x +3 = 0
D= 4-4*(-1)*3=4+12=16
x (1,2) =( 2+-4)/-2
x1=1  x2=-3
Получили, что числовая прямая  точками  х1  и  х2  делится на 3 промежутка   __- ____ . _____+________ . ____-_______
                                   -3                           1                  
Находим знак производной на каждом промежутке.
Функция возрастает на промежутке  (-3; 1) и убывает на лвух промежутках (от -бесконечности до -3)U (от 1 до + бесконечности)
Похожие вопросы
Предмет: История, автор: koralifejzen
Предмет: Қазақ тiлi, автор: Аноним