Предмет: Геометрия, автор: Dasha568489

1. Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол 60 градусов. Найдите отношение объемов конуса и шара.
2. Объем цилиндра равен 96π (см в кубе). Площадь его осевого сечения 48 (см в квадрате). Найдите площадь сферы описанной около цилиндра.
( С рисункоми)

Ответы

Автор ответа: Hrisula
0

1) Формула объёма конуса V=S•H:3=πr²H:3

Формула объёма шара

V=4πR³:3

Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°. 

Выразим радиус r конуса через радиус R шара.

r=2R:tg60°=2R/√3

V(кон)=π(2R/√3)²•2R²3=π8R³/9

V(шара)=4πR³/3

V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3

———————

2) Формула объёма цилиндра 

V=πr²•H

Формула площади осевого сечения цилиндра

S=2r•H

Разделим одну формулу на другую:

(πr²•H):(2r•H)=πr/2⇒

96π:48=πr/2⇒

4π=πr

r=4

Из площади осевого сечения цилиндра:

Н=S:2r=48:8=6

На схематическом рисунке сферы с вписанным цилиндром 

АВ- высота цилиндра, ВС - его диаметр, 

АС - диаметр сферы. 

АС=√(6²+8²)=√100=10

R=10:2=

S(сф)=4πR8=4π•25=100π см²

Приложения:
Похожие вопросы