Предмет: Геометрия,
автор: Даашааааа
Площадь параллелограмма ABCD равна 6. Найдите площадь параллелограмма A'B'C'D', вершинами которого являются середины сторон данного параллелограмма (Картинка)
Приложения:

Ответы
Автор ответа:
0
Площадь параллелограмма D'DCB' равна половине площади параллелограмма ADCB, так как D'B' соединяет середины сторон AD и CB. Площадь треугольника D'C'B' равна половине параллелограмма D'DCB', так как имеют общее основание и высоту.
Итак, треугольник D'C'B' равен 3/2.
Площадь параллелограмма A'D'C'B' равна двум площадям треугольника D'C'B', так как треугольник A'D'B' равен треугольнику D'C'B'.
Следовательно, площадь параллелограмма A'D'C'B' = 2*(3/2)=3.
Итак, треугольник D'C'B' равен 3/2.
Площадь параллелограмма A'D'C'B' равна двум площадям треугольника D'C'B', так как треугольник A'D'B' равен треугольнику D'C'B'.
Следовательно, площадь параллелограмма A'D'C'B' = 2*(3/2)=3.
Похожие вопросы
Предмет: Математика,
автор: dzanmazlinov
Предмет: Химия,
автор: Аноним
Предмет: Қазақ тiлi,
автор: Аноним
Предмет: Алгебра,
автор: olyagorb07