Предмет: Алгебра,
автор: инкогнито40
даю всего 10 балов( больше нету номер 680 выполните умножение
Приложения:
![](https://files.topotvet.com/i/165/1652141d0a2adade7c5b9bd95b5e06fc.jpg)
Ответы
Автор ответа:
0
Primenyaem k kajdomu primeru formulu summi (raznosti) kubov dvux chisel:
a^3 + b^3 = (a + b)(a^2 - ab + b^2
a^3 - b^3 = (a - b)(a^2 + ab + b^2)
(b - 4)(b^2 + 4b + 16) = (b - 4) (b^2 + b*4 + 4^2) = b^3 - 4^3 = b^3 - 64
(2a + 3b)(4a^2 - 6ab + 9b2) = (2a + 3b)[(2a)^2 - 2a*3b + (3b)^2] =
= (2a)^3 + (3b)^3 = 8a3 + 27b3
(x^3 + 6y^2)(x^6 - 6*x^3*y^2 + 36y^4 =
= (x^3 + 6y^2)[(x^3)^2 - x^3*6y^2 + (6y^2)^2] =
= (x^3)^3 + (6y^2)^3 = x^9 + 216y^6
a^3 + b^3 = (a + b)(a^2 - ab + b^2
a^3 - b^3 = (a - b)(a^2 + ab + b^2)
(b - 4)(b^2 + 4b + 16) = (b - 4) (b^2 + b*4 + 4^2) = b^3 - 4^3 = b^3 - 64
(2a + 3b)(4a^2 - 6ab + 9b2) = (2a + 3b)[(2a)^2 - 2a*3b + (3b)^2] =
= (2a)^3 + (3b)^3 = 8a3 + 27b3
(x^3 + 6y^2)(x^6 - 6*x^3*y^2 + 36y^4 =
= (x^3 + 6y^2)[(x^3)^2 - x^3*6y^2 + (6y^2)^2] =
= (x^3)^3 + (6y^2)^3 = x^9 + 216y^6
Похожие вопросы
Предмет: Математика,
автор: arajkaamireeva
Предмет: Математика,
автор: Аноним
Предмет: Английский язык,
автор: ulbolsyn2010
Предмет: Физика,
автор: Alinka337
Предмет: Геометрия,
автор: sashenka1401199