Предмет: Алгебра, автор: innabelesikova36

Какое уравнение имеет два различных корня ?
1)9x^2+4x-8=0
2)3x^2+6x+4=0

Ответы

Автор ответа: Newtion
0
1)
9x^2+4x-8=0
 sqrt{D}= sqrt{16+288}= sqrt{304}=4 sqrt{19}
x_{1,2}= frac{-4pm4 sqrt{19}}{18}= frac{-4(1pm sqrt{19}}{8}=- frac{1pm sqrt{19}}{2}

2)
3x^2+6x+4=0
 sqrt{D}= sqrt{36-48}= sqrt{-12}
Значит уравнение не имеет корней в множестве вещественных чисел.

Ответ: 1 уравнение имеет 2 различных корня.
Похожие вопросы