Предмет: Математика,
автор: w1n100H
При каких значениях а уравнение имеет только один корень. 4^x - 2^x+2 +4a-a^2=0
Ответы
Автор ответа:
0
Обозначим 2^x=y
y^2-y+0,25+(1,75+4a-a^2)=0
(y-0,5)^2=a^2-4a-1,75
(y-0,5)^2=a^2-4a+4-5,75
(y-0,5)^2=(a-2)^2-5,75
Уравнение имеет единственный корень , если правая часть равна 0
или , если второй корень отрицателен (т.к. 2^x>0).
Второй корень отрицателен, если sqrt((a-2)^2-5,75)<0,5
Это значит, что (a-2)^2-5,75<0,25
(a-2)^2<6
2-sqrt(6) < a<2+sqrt(6)
При этом : (a-2)^2-5,75=>0
a=> 2+sqrt(5,75)
или a<=2-sqrt(5,75)
Значит :
2+sqrt(5,75)<=a<2+sqrt(6)
или
2-sqrt(6) < a<=2-sqrt(5,75)
Здесь : sqrt - корень квадратный.
а<=в а-меньше либо равно в
y^2-y+0,25+(1,75+4a-a^2)=0
(y-0,5)^2=a^2-4a-1,75
(y-0,5)^2=a^2-4a+4-5,75
(y-0,5)^2=(a-2)^2-5,75
Уравнение имеет единственный корень , если правая часть равна 0
или , если второй корень отрицателен (т.к. 2^x>0).
Второй корень отрицателен, если sqrt((a-2)^2-5,75)<0,5
Это значит, что (a-2)^2-5,75<0,25
(a-2)^2<6
2-sqrt(6) < a<2+sqrt(6)
При этом : (a-2)^2-5,75=>0
a=> 2+sqrt(5,75)
или a<=2-sqrt(5,75)
Значит :
2+sqrt(5,75)<=a<2+sqrt(6)
или
2-sqrt(6) < a<=2-sqrt(5,75)
Здесь : sqrt - корень квадратный.
а<=в а-меньше либо равно в
Похожие вопросы
Предмет: Математика,
автор: arturgachalife
Предмет: Русский язык,
автор: aidanakusanova
Предмет: Русский язык,
автор: hamhoevakalimat
Предмет: Физика,
автор: dzeitov
Предмет: Алгебра,
автор: shipitsina2015