первая труба пропускает на 4 литра воды в минуту меньше чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 480 литров она заполняет на 8 минут дольше, чем вторая труба запоняет резервуар объемом 384 литра
Ответы
Пусть первая пропускает х литров воды в минуту, тогда вторая х+4.
у - время, за которое первая труба заполняет резервуар в 480 литров, тогда
(у-8) - время, за которое вторая труба заполняет резервуар в 384 литра.
Получается система уравнений:
ху = 480; (х+4)(у-8) = 384
х = 480/у; ху - 8х + 4у - 32=384;
х = 480/у; (подставляем во второе уравнение системы:)
480*у/у - 8*480/у + 4у - 32 - 384 = 0
480 - 3840/у + 4у - 416 = 0 (умножаем обе части равенства на у
480у - 3840 + 4у^2 - 416у = 0
4у^2 + 64 у - 3840 = 0 (делим обе части равенства на 4
у^2 + 16у - 960 = 0
По формуле высчитываем дискриминант:
Д = 16*16 - 4*1*(-960) = 256 + 3840 = 4096
у1 = (-16 + 64)/2*1 = 24
у2 = отрицательное число О_О
х = 480/у = 480/ 24 = 20
Ответ: первая труба пропускает 20 литров воды в минуту