Предмет: Геометрия,
автор: nikulkina00
найдите меньшую диагональ ромба,стороны которого равны 19, аострый угол 60 градусов
Ответы
Автор ответа:
0
Диагонали ромба делят углы пополам, пересекаются под прямым углом и в точке пересечения делятся пополам. В результате пересечения диагоналей образуются прямоугольные треугольники с гипотенузой равной стороне ромба и катетами равными половине диагоналей.
В нашем случае гипотенуза - 19, а один из острых углов - 30°. В прямоугольном треугольнике против угла 30° лежит катет в два раза меньший гипотенузы. Угол 30° - меньший из углов треугольника. Против меньшего угла лежит меньшая сторона. Таким образом меньшая диагональ равна 19/2*2=19 ед.
И самый простой способ.
Второй угол ромба - 180-60=120°. Диагональ делит его на равносторонний треугольник. Меньшая диагональ равна 19 ед.
В нашем случае гипотенуза - 19, а один из острых углов - 30°. В прямоугольном треугольнике против угла 30° лежит катет в два раза меньший гипотенузы. Угол 30° - меньший из углов треугольника. Против меньшего угла лежит меньшая сторона. Таким образом меньшая диагональ равна 19/2*2=19 ед.
И самый простой способ.
Второй угол ромба - 180-60=120°. Диагональ делит его на равносторонний треугольник. Меньшая диагональ равна 19 ед.
Приложения:
Похожие вопросы
Предмет: Алгебра,
автор: Alex19090
Предмет: Литература,
автор: dashabanko30
Предмет: Литература,
автор: lilja2008
Предмет: Математика,
автор: KаTюVкA
Предмет: Биология,
автор: sofiy111